Metamath Proof Explorer


Theorem r1sssucd

Description: Deductive form of r1sssuc . (Contributed by Noam Pasman, 19-Jan-2025)

Ref Expression
Hypothesis r1sssucd.1 ( 𝜑𝐴 ∈ On )
Assertion r1sssucd ( 𝜑 → ( 𝑅1𝐴 ) ⊆ ( 𝑅1 ‘ suc 𝐴 ) )

Proof

Step Hyp Ref Expression
1 r1sssucd.1 ( 𝜑𝐴 ∈ On )
2 r1sssuc ( 𝐴 ∈ On → ( 𝑅1𝐴 ) ⊆ ( 𝑅1 ‘ suc 𝐴 ) )
3 1 2 syl ( 𝜑 → ( 𝑅1𝐴 ) ⊆ ( 𝑅1 ‘ suc 𝐴 ) )