Description: Deductive form of r1sssuc . (Contributed by Noam Pasman, 19-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | r1sssucd.1 | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| Assertion | r1sssucd | ⊢ ( 𝜑 → ( 𝑅1 ‘ 𝐴 ) ⊆ ( 𝑅1 ‘ suc 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1sssucd.1 | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 2 | r1sssuc | ⊢ ( 𝐴 ∈ On → ( 𝑅1 ‘ 𝐴 ) ⊆ ( 𝑅1 ‘ suc 𝐴 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝜑 → ( 𝑅1 ‘ 𝐴 ) ⊆ ( 𝑅1 ‘ suc 𝐴 ) ) |