Metamath Proof Explorer


Theorem r1tr2

Description: The union of a cumulative hierarchy of sets at ordinal A is a subset of the hierarchy at A . JFM CLASSES1 th. 40. (Contributed by FL, 20-Apr-2011)

Ref Expression
Assertion r1tr2 R1AR1A

Proof

Step Hyp Ref Expression
1 r1tr TrR1A
2 df-tr TrR1AR1AR1A
3 1 2 mpbi R1AR1A