Metamath Proof Explorer


Theorem rabeq0

Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010) (Revised by BJ, 16-Jul-2021)

Ref Expression
Assertion rabeq0 xA|φ=xA¬φ

Proof

Step Hyp Ref Expression
1 ab0 x|xAφ=x¬xAφ
2 df-rab xA|φ=x|xAφ
3 2 eqeq1i xA|φ=x|xAφ=
4 raln xA¬φx¬xAφ
5 1 3 4 3bitr4i xA|φ=xA¬φ