Metamath Proof Explorer


Theorem rabexgfGS

Description: Separation Scheme in terms of a restricted class abstraction. To be removed in profit of Glauco's equivalent version. (Contributed by Thierry Arnoux, 11-May-2017)

Ref Expression
Hypothesis rabexgfGS.1 _xA
Assertion rabexgfGS AVxA|φV

Proof

Step Hyp Ref Expression
1 rabexgfGS.1 _xA
2 nfrab1 _xxA|φ
3 2 1 dfss2f xA|φAxxxA|φxA
4 rabidim1 xxA|φxA
5 3 4 mpgbir xA|φA
6 elex AVAV
7 ssexg xA|φAAVxA|φV
8 5 6 7 sylancr AVxA|φV