Metamath Proof Explorer


Theorem rabsnel

Description: Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by Thierry Arnoux, 15-Sep-2018)

Ref Expression
Hypothesis rabsnel.1 BV
Assertion rabsnel xA|φ=BBA

Proof

Step Hyp Ref Expression
1 rabsnel.1 BV
2 1 snid BB
3 eleq2 xA|φ=BBxA|φBB
4 2 3 mpbiri xA|φ=BBxA|φ
5 elrabi BxA|φBA
6 4 5 syl xA|φ=BBA