Description: Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by Thierry Arnoux, 15-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rabsnel.1 | ⊢ 𝐵 ∈ V | |
| Assertion | rabsnel | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝐵 } → 𝐵 ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabsnel.1 | ⊢ 𝐵 ∈ V | |
| 2 | 1 | snid | ⊢ 𝐵 ∈ { 𝐵 } |
| 3 | eleq2 | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝐵 } → ( 𝐵 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ↔ 𝐵 ∈ { 𝐵 } ) ) | |
| 4 | 2 3 | mpbiri | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝐵 } → 𝐵 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) |
| 5 | elrabi | ⊢ ( 𝐵 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } → 𝐵 ∈ 𝐴 ) | |
| 6 | 4 5 | syl | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝐵 } → 𝐵 ∈ 𝐴 ) |