Description: Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by Thierry Arnoux, 15-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rabsnel.1 | |- B e. _V |
|
| Assertion | rabsnel | |- ( { x e. A | ph } = { B } -> B e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabsnel.1 | |- B e. _V |
|
| 2 | 1 | snid | |- B e. { B } |
| 3 | eleq2 | |- ( { x e. A | ph } = { B } -> ( B e. { x e. A | ph } <-> B e. { B } ) ) |
|
| 4 | 2 3 | mpbiri | |- ( { x e. A | ph } = { B } -> B e. { x e. A | ph } ) |
| 5 | elrabi | |- ( B e. { x e. A | ph } -> B e. A ) |
|
| 6 | 4 5 | syl | |- ( { x e. A | ph } = { B } -> B e. A ) |