Metamath Proof Explorer


Theorem rabid2OLD

Description: Obsolete version of rabid2 as of 24-Nov-2024. (Contributed by NM, 9-Oct-2003) (Proof shortened by Andrew Salmon, 30-May-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion rabid2OLD A=xA|φxAφ

Proof

Step Hyp Ref Expression
1 eqabb A=x|xAφxxAxAφ
2 pm4.71 xAφxAxAφ
3 2 albii xxAφxxAxAφ
4 1 3 bitr4i A=x|xAφxxAφ
5 df-rab xA|φ=x|xAφ
6 5 eqeq2i A=xA|φA=x|xAφ
7 df-ral xAφxxAφ
8 4 6 7 3bitr4i A=xA|φxAφ