Metamath Proof Explorer


Theorem rabssab

Description: A restricted class is a subclass of the corresponding unrestricted class. (Contributed by Mario Carneiro, 23-Dec-2016)

Ref Expression
Assertion rabssab xA|φx|φ

Proof

Step Hyp Ref Expression
1 df-rab xA|φ=x|xAφ
2 simpr xAφφ
3 2 ss2abi x|xAφx|φ
4 1 3 eqsstri xA|φx|φ