Metamath Proof Explorer


Theorem ralbiim

Description: Split a biconditional and distribute quantifier. Restricted quantifier version of albiim . (Contributed by NM, 3-Jun-2012)

Ref Expression
Assertion ralbiim xAφψxAφψxAψφ

Proof

Step Hyp Ref Expression
1 dfbi2 φψφψψφ
2 1 ralbii xAφψxAφψψφ
3 r19.26 xAφψψφxAφψxAψφ
4 2 3 bitri xAφψxAφψxAψφ