Metamath Proof Explorer


Theorem ralcom4OLD

Description: Obsolete version of ralcom4 as of 31-Oct-2024. (Contributed by NM, 26-Mar-2004) (Proof shortened by Andrew Salmon, 8-Jun-2011) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion ralcom4OLD xAyφyxAφ

Proof

Step Hyp Ref Expression
1 19.21v yxAφxAyφ
2 1 bicomi xAyφyxAφ
3 2 albii xxAyφxyxAφ
4 alcom xyxAφyxxAφ
5 3 4 bitri xxAyφyxxAφ
6 df-ral xAyφxxAyφ
7 df-ral xAφxxAφ
8 7 albii yxAφyxxAφ
9 5 6 8 3bitr4i xAyφyxAφ