Metamath Proof Explorer


Theorem raldifeq

Description: Equality theorem for restricted universal quantifier. (Contributed by Thierry Arnoux, 6-Jul-2019)

Ref Expression
Hypotheses raldifeq.1 φAB
raldifeq.2 φxBAψ
Assertion raldifeq φxAψxBψ

Proof

Step Hyp Ref Expression
1 raldifeq.1 φAB
2 raldifeq.2 φxBAψ
3 2 biantrud φxAψxAψxBAψ
4 ralunb xABAψxAψxBAψ
5 3 4 bitr4di φxAψxABAψ
6 undif ABABA=B
7 1 6 sylib φABA=B
8 7 raleqdv φxABAψxBψ
9 5 8 bitrd φxAψxBψ