Metamath Proof Explorer


Theorem ralfal

Description: Two ways of expressing empty set. (Contributed by Glauco Siliprandi, 24-Jan-2024)

Ref Expression
Hypothesis ralfal.1 _xA
Assertion ralfal A=xA

Proof

Step Hyp Ref Expression
1 ralfal.1 _xA
2 df-fal ¬
3 2 ralbii xAxA¬
4 ralnex xA¬¬xA
5 3 4 bitri xA¬xA
6 rextru xxAxA
7 6 notbii ¬xxA¬xA
8 1 neq0f ¬A=xxA
9 8 con1bii ¬xxAA=
10 5 7 9 3bitr2ri A=xA