Metamath Proof Explorer


Theorem ralpr

Description: Convert a restricted universal quantification over a pair to a conjunction. (Contributed by NM, 3-Jun-2007) (Revised by Mario Carneiro, 23-Apr-2015)

Ref Expression
Hypotheses ralpr.1 AV
ralpr.2 BV
ralpr.3 x=Aφψ
ralpr.4 x=Bφχ
Assertion ralpr xABφψχ

Proof

Step Hyp Ref Expression
1 ralpr.1 AV
2 ralpr.2 BV
3 ralpr.3 x=Aφψ
4 ralpr.4 x=Bφχ
5 3 4 ralprg AVBVxABφψχ
6 1 2 5 mp2an xABφψχ