Metamath Proof Explorer


Theorem ralrexbidOLD

Description: Obsolete version of ralrexbid as of 4-Nov-2024. (Contributed by AV, 21-Oct-2023) Reduce axiom usage. (Revised by SN, 13-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ralrexbid.1 φψθ
Assertion ralrexbidOLD xAφxAψxAθ

Proof

Step Hyp Ref Expression
1 ralrexbid.1 φψθ
2 df-ral xAφxxAφ
3 1 imim2i xAφxAψθ
4 3 pm5.32d xAφxAψxAθ
5 4 alexbii xxAφxxAψxxAθ
6 2 5 sylbi xAφxxAψxxAθ
7 df-rex xAψxxAψ
8 df-rex xAθxxAθ
9 6 7 8 3bitr4g xAφxAψxAθ