Metamath Proof Explorer


Theorem ralrimdva

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Feb-2008) (Proof shortened by Wolf Lammen, 28-Dec-2019)

Ref Expression
Hypothesis ralrimdva.1 φxAψχ
Assertion ralrimdva φψxAχ

Proof

Step Hyp Ref Expression
1 ralrimdva.1 φxAψχ
2 1 expimpd φxAψχ
3 2 expcomd φψxAχ
4 3 ralrimdv φψxAχ