Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
ralrot3
Next ⟩
rexrot4
Metamath Proof Explorer
Ascii
Unicode
Theorem
ralrot3
Description:
Rotate three restricted universal quantifiers.
(Contributed by
AV
, 3-Dec-2021)
Ref
Expression
Assertion
ralrot3
⊢
∀
x
∈
A
∀
y
∈
B
∀
z
∈
C
φ
↔
∀
z
∈
C
∀
x
∈
A
∀
y
∈
B
φ
Proof
Step
Hyp
Ref
Expression
1
ralcom
⊢
∀
y
∈
B
∀
z
∈
C
φ
↔
∀
z
∈
C
∀
y
∈
B
φ
2
1
ralbii
⊢
∀
x
∈
A
∀
y
∈
B
∀
z
∈
C
φ
↔
∀
x
∈
A
∀
z
∈
C
∀
y
∈
B
φ
3
ralcom
⊢
∀
x
∈
A
∀
z
∈
C
∀
y
∈
B
φ
↔
∀
z
∈
C
∀
x
∈
A
∀
y
∈
B
φ
4
2
3
bitri
⊢
∀
x
∈
A
∀
y
∈
B
∀
z
∈
C
φ
↔
∀
z
∈
C
∀
x
∈
A
∀
y
∈
B
φ