Metamath Proof Explorer


Theorem ralrot3

Description: Rotate three restricted universal quantifiers. (Contributed by AV, 3-Dec-2021)

Ref Expression
Assertion ralrot3 xAyBzCφzCxAyBφ

Proof

Step Hyp Ref Expression
1 ralcom yBzCφzCyBφ
2 1 ralbii xAyBzCφxAzCyBφ
3 ralcom xAzCyBφzCxAyBφ
4 2 3 bitri xAyBzCφzCxAyBφ