Metamath Proof Explorer
		
		
		
		Description:  Convert a universal quantification restricted to a singleton to a
       substitution.  (Contributed by NM, 27-Apr-2009)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | ralsn.1 |  | 
					
						|  |  | ralsn.2 |  | 
				
					|  | Assertion | ralsn |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ralsn.1 |  | 
						
							| 2 |  | ralsn.2 |  | 
						
							| 3 | 2 | ralsng |  | 
						
							| 4 | 1 3 | ax-mp |  |