Metamath Proof Explorer


Theorem ralsngf

Description: Restricted universal quantification over a singleton. (Contributed by NM, 14-Dec-2005) (Revised by AV, 3-Apr-2023)

Ref Expression
Hypotheses rexsngf.1 xψ
rexsngf.2 x=Aφψ
Assertion ralsngf AVxAφψ

Proof

Step Hyp Ref Expression
1 rexsngf.1 xψ
2 rexsngf.2 x=Aφψ
3 ralsnsg AVxAφ[˙A/x]˙φ
4 1 2 sbciegf AV[˙A/x]˙φψ
5 3 4 bitrd AVxAφψ