Metamath Proof Explorer
		
		
		
		Description:  Restricted universal quantification over a singleton.  (Contributed by NM, 14-Dec-2005)  (Revised by AV, 3-Apr-2023)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | rexsngf.1 |  | 
					
						|  |  | rexsngf.2 |  | 
				
					|  | Assertion | ralsngf |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rexsngf.1 |  | 
						
							| 2 |  | rexsngf.2 |  | 
						
							| 3 |  | ralsnsg |  | 
						
							| 4 | 1 2 | sbciegf |  | 
						
							| 5 | 3 4 | bitrd |  |