Metamath Proof Explorer


Theorem ralsnsg

Description: Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005) (Revised by Mario Carneiro, 23-Apr-2015)

Ref Expression
Assertion ralsnsg AVxAφ[˙A/x]˙φ

Proof

Step Hyp Ref Expression
1 df-ral xAφxxAφ
2 velsn xAx=A
3 2 imbi1i xAφx=Aφ
4 3 albii xxAφxx=Aφ
5 1 4 bitri xAφxx=Aφ
6 sbc6g AV[˙A/x]˙φxx=Aφ
7 5 6 bitr4id AVxAφ[˙A/x]˙φ