Metamath Proof Explorer


Theorem raltp

Description: Convert a universal quantification over an unordered triple to a conjunction. (Contributed by NM, 13-Sep-2011) (Revised by Mario Carneiro, 23-Apr-2015)

Ref Expression
Hypotheses raltp.1 AV
raltp.2 BV
raltp.3 CV
raltp.4 x=Aφψ
raltp.5 x=Bφχ
raltp.6 x=Cφθ
Assertion raltp xABCφψχθ

Proof

Step Hyp Ref Expression
1 raltp.1 AV
2 raltp.2 BV
3 raltp.3 CV
4 raltp.4 x=Aφψ
5 raltp.5 x=Bφχ
6 raltp.6 x=Cφθ
7 4 5 6 raltpg AVBVCVxABCφψχθ
8 1 2 3 7 mp3an xABCφψχθ