Metamath Proof Explorer
Description: Convert an existential quantification over an unordered triple to a
disjunction. (Contributed by Mario Carneiro, 23-Apr-2015)
|
|
Ref |
Expression |
|
Hypotheses |
raltp.1 |
|
|
|
raltp.2 |
|
|
|
raltp.3 |
|
|
|
raltp.4 |
|
|
|
raltp.5 |
|
|
|
raltp.6 |
|
|
Assertion |
rextp |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
raltp.1 |
|
| 2 |
|
raltp.2 |
|
| 3 |
|
raltp.3 |
|
| 4 |
|
raltp.4 |
|
| 5 |
|
raltp.5 |
|
| 6 |
|
raltp.6 |
|
| 7 |
4 5 6
|
rextpg |
|
| 8 |
1 2 3 7
|
mp3an |
|