Description: Convert an existential quantification over an unordered triple to a disjunction. (Contributed by Mario Carneiro, 23-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | raltp.1 | |- A e. _V |
|
| raltp.2 | |- B e. _V |
||
| raltp.3 | |- C e. _V |
||
| raltp.4 | |- ( x = A -> ( ph <-> ps ) ) |
||
| raltp.5 | |- ( x = B -> ( ph <-> ch ) ) |
||
| raltp.6 | |- ( x = C -> ( ph <-> th ) ) |
||
| Assertion | rextp | |- ( E. x e. { A , B , C } ph <-> ( ps \/ ch \/ th ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raltp.1 | |- A e. _V |
|
| 2 | raltp.2 | |- B e. _V |
|
| 3 | raltp.3 | |- C e. _V |
|
| 4 | raltp.4 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 5 | raltp.5 | |- ( x = B -> ( ph <-> ch ) ) |
|
| 6 | raltp.6 | |- ( x = C -> ( ph <-> th ) ) |
|
| 7 | 4 5 6 | rextpg | |- ( ( A e. _V /\ B e. _V /\ C e. _V ) -> ( E. x e. { A , B , C } ph <-> ( ps \/ ch \/ th ) ) ) |
| 8 | 1 2 3 7 | mp3an | |- ( E. x e. { A , B , C } ph <-> ( ps \/ ch \/ th ) ) |