Description: Convert an existential quantification over an unordered triple to a disjunction. (Contributed by Mario Carneiro, 23-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | raltp.1 | ⊢ 𝐴 ∈ V | |
| raltp.2 | ⊢ 𝐵 ∈ V | ||
| raltp.3 | ⊢ 𝐶 ∈ V | ||
| raltp.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| raltp.5 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) | ||
| raltp.6 | ⊢ ( 𝑥 = 𝐶 → ( 𝜑 ↔ 𝜃 ) ) | ||
| Assertion | rextp | ⊢ ( ∃ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝜑 ↔ ( 𝜓 ∨ 𝜒 ∨ 𝜃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raltp.1 | ⊢ 𝐴 ∈ V | |
| 2 | raltp.2 | ⊢ 𝐵 ∈ V | |
| 3 | raltp.3 | ⊢ 𝐶 ∈ V | |
| 4 | raltp.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 5 | raltp.5 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) | |
| 6 | raltp.6 | ⊢ ( 𝑥 = 𝐶 → ( 𝜑 ↔ 𝜃 ) ) | |
| 7 | 4 5 6 | rextpg | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( ∃ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝜑 ↔ ( 𝜓 ∨ 𝜒 ∨ 𝜃 ) ) ) |
| 8 | 1 2 3 7 | mp3an | ⊢ ( ∃ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝜑 ↔ ( 𝜓 ∨ 𝜒 ∨ 𝜃 ) ) |