Metamath Proof Explorer


Theorem ralxp3

Description: Restricted for-all over a triple cross product. (Contributed by Scott Fenton, 21-Aug-2024)

Ref Expression
Hypothesis ralxp3.1 p = x y z φ ψ
Assertion ralxp3 p A × B × C φ x A y B z C ψ

Proof

Step Hyp Ref Expression
1 ralxp3.1 p = x y z φ ψ
2 nfv x φ
3 nfv y φ
4 nfv z φ
5 nfv p ψ
6 2 3 4 5 1 ralxp3f p A × B × C φ x A y B z C ψ