Metamath Proof Explorer


Theorem rbropap

Description: Properties of a pair in a restricted binary relation M expressed as an ordered-pair class abstraction: M is the binary relation W restricted by the condition ps . (Contributed by AV, 31-Jan-2021)

Ref Expression
Hypotheses rbropapd.1 φM=fp|fWpψ
rbropapd.2 f=Fp=Pψχ
Assertion rbropap φFXPYFMPFWPχ

Proof

Step Hyp Ref Expression
1 rbropapd.1 φM=fp|fWpψ
2 rbropapd.2 f=Fp=Pψχ
3 1 2 rbropapd φFXPYFMPFWPχ
4 3 3impib φFXPYFMPFWPχ