Metamath Proof Explorer


Theorem rdgeq12

Description: Equality theorem for the recursive definition generator. (Contributed by Scott Fenton, 28-Apr-2012)

Ref Expression
Assertion rdgeq12 F=GA=BrecFA=recGB

Proof

Step Hyp Ref Expression
1 rdgeq2 A=BrecFA=recFB
2 rdgeq1 F=GrecFB=recGB
3 1 2 sylan9eqr F=GA=BrecFA=recGB