Metamath Proof Explorer


Theorem rdgval

Description: Value of the recursive definition generator. (Contributed by NM, 9-Apr-1995) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion rdgval BOnrecFAB=gVifg=AifLimdomgrangFgdomgrecFAB

Proof

Step Hyp Ref Expression
1 df-rdg recFA=recsgVifg=AifLimdomgrangFgdomg
2 1 tfr2 BOnrecFAB=gVifg=AifLimdomgrangFgdomgrecFAB