Metamath Proof Explorer


Theorem re1ax2lem

Description: Lemma for re1ax2 . (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion re1ax2lem φψχψφχ

Proof

Step Hyp Ref Expression
1 tb-ax2 ψψχψ
2 tb-ax1 ψχψψχψχχ
3 1 2 tbsyl ψψχψχχ
4 tb-ax1 ψχψχχψχχχψχχ
5 tb-ax3 ψχχχψχχψχχ
6 4 5 tbsyl ψχψχχψχχ
7 3 6 tbsyl ψψχχ
8 tb-ax1 φψχψχχφχ
9 tb-ax1 ψψχχψχχφχψφχ
10 7 8 9 mpsyl φψχψφχ