Metamath Proof Explorer


Theorem re1ax2

Description: ax-2 rederived from the Tarski-Bernays axiom system. Often tb-ax1 is replaced with this theorem to make a "standard" system. This is because this theorem is easier to work with, despite it being longer. (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion re1ax2 φψχφψφχ

Proof

Step Hyp Ref Expression
1 re1ax2lem φψχψφχ
2 tb-ax1 φφχφχχφχ
3 tb-ax3 φχχφχφχ
4 2 3 tbsyl φφχφχ
5 tb-ax1 φψψφχφφχ
6 re1ax2lem φψψφχφφχψφχφψφφχ
7 5 6 ax-mp ψφχφψφφχ
8 tb-ax1 φψφφχφφχφχφψφχ
9 re1ax2lem φψφφχφφχφχφψφχφφχφχφψφφχφψφχ
10 8 9 ax-mp φφχφχφψφφχφψφχ
11 4 7 10 mpsyl ψφχφψφχ
12 1 11 tbsyl φψχφψφχ