Metamath Proof Explorer


Theorem naim1

Description: Constructor theorem for -/\ . (Contributed by Anthony Hart, 1-Sep-2011)

Ref Expression
Assertion naim1 φψψχφχ

Proof

Step Hyp Ref Expression
1 con3 φψ¬ψ¬φ
2 1 orim1d φψ¬ψ¬χ¬φ¬χ
3 pm3.13 ¬ψχ¬ψ¬χ
4 pm3.14 ¬φ¬χ¬φχ
5 3 4 imim12i ¬ψ¬χ¬φ¬χ¬ψχ¬φχ
6 df-nan ψχ¬ψχ
7 df-nan φχ¬φχ
8 5 6 7 3imtr4g ¬ψ¬χ¬φ¬χψχφχ
9 2 8 syl φψψχφχ