| Step |
Hyp |
Ref |
Expression |
| 1 |
|
re1ax2lem |
|- ( ( ph -> ( ps -> ch ) ) -> ( ps -> ( ph -> ch ) ) ) |
| 2 |
|
tb-ax1 |
|- ( ( ph -> ( ph -> ch ) ) -> ( ( ( ph -> ch ) -> ch ) -> ( ph -> ch ) ) ) |
| 3 |
|
tb-ax3 |
|- ( ( ( ( ph -> ch ) -> ch ) -> ( ph -> ch ) ) -> ( ph -> ch ) ) |
| 4 |
2 3
|
tbsyl |
|- ( ( ph -> ( ph -> ch ) ) -> ( ph -> ch ) ) |
| 5 |
|
tb-ax1 |
|- ( ( ph -> ps ) -> ( ( ps -> ( ph -> ch ) ) -> ( ph -> ( ph -> ch ) ) ) ) |
| 6 |
|
re1ax2lem |
|- ( ( ( ph -> ps ) -> ( ( ps -> ( ph -> ch ) ) -> ( ph -> ( ph -> ch ) ) ) ) -> ( ( ps -> ( ph -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ( ph -> ch ) ) ) ) ) |
| 7 |
5 6
|
ax-mp |
|- ( ( ps -> ( ph -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ( ph -> ch ) ) ) ) |
| 8 |
|
tb-ax1 |
|- ( ( ( ph -> ps ) -> ( ph -> ( ph -> ch ) ) ) -> ( ( ( ph -> ( ph -> ch ) ) -> ( ph -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) ) |
| 9 |
|
re1ax2lem |
|- ( ( ( ( ph -> ps ) -> ( ph -> ( ph -> ch ) ) ) -> ( ( ( ph -> ( ph -> ch ) ) -> ( ph -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) ) -> ( ( ( ph -> ( ph -> ch ) ) -> ( ph -> ch ) ) -> ( ( ( ph -> ps ) -> ( ph -> ( ph -> ch ) ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) ) ) |
| 10 |
8 9
|
ax-mp |
|- ( ( ( ph -> ( ph -> ch ) ) -> ( ph -> ch ) ) -> ( ( ( ph -> ps ) -> ( ph -> ( ph -> ch ) ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) ) |
| 11 |
4 7 10
|
mpsyl |
|- ( ( ps -> ( ph -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) |
| 12 |
1 11
|
tbsyl |
|- ( ( ph -> ( ps -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) |