Metamath Proof Explorer


Theorem recxpcld

Description: Positive real closure of the complex power function. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses recxpcld.1 φA
recxpcld.2 φ0A
recxpcld.3 φB
Assertion recxpcld φAB

Proof

Step Hyp Ref Expression
1 recxpcld.1 φA
2 recxpcld.2 φ0A
3 recxpcld.3 φB
4 recxpcl A0ABAB
5 1 2 3 4 syl3anc φAB