Metamath Proof Explorer


Theorem reeanv

Description: Rearrange restricted existential quantifiers. (Contributed by NM, 9-May-1999)

Ref Expression
Assertion reeanv xAyBφψxAφyBψ

Proof

Step Hyp Ref Expression
1 exdistrv xyxAφyBψxxAφyyBψ
2 1 reeanlem xAyBφψxAφyBψ