Metamath Proof Explorer


Theorem reexpclzd

Description: Closure of exponentiation of reals. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpexpclzd.1 φA
rpexpclzd.2 φA0
rpexpclzd.3 φN
Assertion reexpclzd φAN

Proof

Step Hyp Ref Expression
1 rpexpclzd.1 φA
2 rpexpclzd.2 φA0
3 rpexpclzd.3 φN
4 reexpclz AA0NAN
5 1 2 3 4 syl3anc φAN