Metamath Proof Explorer


Theorem refrelredund3

Description: The naive version of the definition of reflexive relation ( A. x e. dom R x R x /\ Rel R ) is redundant with respect to reflexive relation (see dfrefrel3 ) in equivalence relation. (Contributed by Peter Mazsa, 25-Oct-2022)

Ref Expression
Assertion refrelredund3 redundxdomRxRxRelRRefRelREqvRelR

Proof

Step Hyp Ref Expression
1 refrelredund2 redundIdomRRRelRRefRelREqvRelR
2 idrefALT IdomRRxdomRxRx
3 2 anbi1i IdomRRRelRxdomRxRxRelR
4 3 redundpbi1 redundIdomRRRelRRefRelREqvRelRredundxdomRxRxRelRRefRelREqvRelR
5 1 4 mpbi redundxdomRxRxRelRRefRelREqvRelR