Metamath Proof Explorer


Theorem refrelredund3

Description: The naive version of the definition of reflexive relation ( A. x e. dom R x R x /\ Rel R ) is redundant with respect to reflexive relation (see dfrefrel3 ) in equivalence relation. (Contributed by Peter Mazsa, 25-Oct-2022)

Ref Expression
Assertion refrelredund3 redund ( ( ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ∧ Rel 𝑅 ) , RefRel 𝑅 , EqvRel 𝑅 )

Proof

Step Hyp Ref Expression
1 refrelredund2 redund ( ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 ∧ Rel 𝑅 ) , RefRel 𝑅 , EqvRel 𝑅 )
2 idrefALT ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 ↔ ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 )
3 2 anbi1i ( ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 ∧ Rel 𝑅 ) ↔ ( ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ∧ Rel 𝑅 ) )
4 3 redundpbi1 ( redund ( ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 ∧ Rel 𝑅 ) , RefRel 𝑅 , EqvRel 𝑅 ) ↔ redund ( ( ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ∧ Rel 𝑅 ) , RefRel 𝑅 , EqvRel 𝑅 ) )
5 1 4 mpbi redund ( ( ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ∧ Rel 𝑅 ) , RefRel 𝑅 , EqvRel 𝑅 )