Description: The naive version of the definition of reflexive relation ( A. x e. dom R x R x /\ Rel R ) is redundant with respect to reflexive relation (see dfrefrel3 ) in equivalence relation. (Contributed by Peter Mazsa, 25-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | refrelredund3 | ⊢ redund ( ( ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ∧ Rel 𝑅 ) , RefRel 𝑅 , EqvRel 𝑅 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refrelredund2 | ⊢ redund ( ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 ∧ Rel 𝑅 ) , RefRel 𝑅 , EqvRel 𝑅 ) | |
2 | idrefALT | ⊢ ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 ↔ ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ) | |
3 | 2 | anbi1i | ⊢ ( ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 ∧ Rel 𝑅 ) ↔ ( ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ∧ Rel 𝑅 ) ) |
4 | 3 | redundpbi1 | ⊢ ( redund ( ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 ∧ Rel 𝑅 ) , RefRel 𝑅 , EqvRel 𝑅 ) ↔ redund ( ( ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ∧ Rel 𝑅 ) , RefRel 𝑅 , EqvRel 𝑅 ) ) |
5 | 1 4 | mpbi | ⊢ redund ( ( ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ∧ Rel 𝑅 ) , RefRel 𝑅 , EqvRel 𝑅 ) |