Metamath Proof Explorer


Theorem refrelredund2

Description: The naive version of the definition of reflexive relation is redundant with respect to reflexive relation (see dfrefrel2 ) in equivalence relation. (Contributed by Peter Mazsa, 25-Oct-2022)

Ref Expression
Assertion refrelredund2 redund ( ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 ∧ Rel 𝑅 ) , RefRel 𝑅 , EqvRel 𝑅 )

Proof

Step Hyp Ref Expression
1 refrelredund4 redund ( ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 ∧ Rel 𝑅 ) , RefRel 𝑅 , ( RefRel 𝑅 ∧ SymRel 𝑅 ) )
2 df-eqvrel ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅 ) )
3 3simpa ( ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅 ) → ( RefRel 𝑅 ∧ SymRel 𝑅 ) )
4 2 3 sylbi ( EqvRel 𝑅 → ( RefRel 𝑅 ∧ SymRel 𝑅 ) )
5 4 redundpim3 ( redund ( ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 ∧ Rel 𝑅 ) , RefRel 𝑅 , ( RefRel 𝑅 ∧ SymRel 𝑅 ) ) → redund ( ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 ∧ Rel 𝑅 ) , RefRel 𝑅 , EqvRel 𝑅 ) )
6 1 5 ax-mp redund ( ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 ∧ Rel 𝑅 ) , RefRel 𝑅 , EqvRel 𝑅 )