| Step |
Hyp |
Ref |
Expression |
| 1 |
|
refrelredund4 |
|- redund ( ( ( _I |` dom R ) C_ R /\ Rel R ) , RefRel R , ( RefRel R /\ SymRel R ) ) |
| 2 |
|
df-eqvrel |
|- ( EqvRel R <-> ( RefRel R /\ SymRel R /\ TrRel R ) ) |
| 3 |
|
3simpa |
|- ( ( RefRel R /\ SymRel R /\ TrRel R ) -> ( RefRel R /\ SymRel R ) ) |
| 4 |
2 3
|
sylbi |
|- ( EqvRel R -> ( RefRel R /\ SymRel R ) ) |
| 5 |
4
|
redundpim3 |
|- ( redund ( ( ( _I |` dom R ) C_ R /\ Rel R ) , RefRel R , ( RefRel R /\ SymRel R ) ) -> redund ( ( ( _I |` dom R ) C_ R /\ Rel R ) , RefRel R , EqvRel R ) ) |
| 6 |
1 5
|
ax-mp |
|- redund ( ( ( _I |` dom R ) C_ R /\ Rel R ) , RefRel R , EqvRel R ) |