Step |
Hyp |
Ref |
Expression |
1 |
|
inxpssres |
|- ( _I i^i ( dom R X. ran R ) ) C_ ( _I |` dom R ) |
2 |
|
sstr2 |
|- ( ( _I i^i ( dom R X. ran R ) ) C_ ( _I |` dom R ) -> ( ( _I |` dom R ) C_ R -> ( _I i^i ( dom R X. ran R ) ) C_ R ) ) |
3 |
1 2
|
ax-mp |
|- ( ( _I |` dom R ) C_ R -> ( _I i^i ( dom R X. ran R ) ) C_ R ) |
4 |
3
|
anim1i |
|- ( ( ( _I |` dom R ) C_ R /\ Rel R ) -> ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ Rel R ) ) |
5 |
|
dfrefrel2 |
|- ( RefRel R <-> ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ Rel R ) ) |
6 |
4 5
|
sylibr |
|- ( ( ( _I |` dom R ) C_ R /\ Rel R ) -> RefRel R ) |
7 |
|
an12 |
|- ( ( ( ( _I |` dom R ) C_ R /\ Rel R ) /\ ( RefRel R /\ SymRel R ) ) <-> ( RefRel R /\ ( ( ( _I |` dom R ) C_ R /\ Rel R ) /\ SymRel R ) ) ) |
8 |
|
anandir |
|- ( ( ( ( _I |` dom R ) C_ R /\ `' R C_ R ) /\ Rel R ) <-> ( ( ( _I |` dom R ) C_ R /\ Rel R ) /\ ( `' R C_ R /\ Rel R ) ) ) |
9 |
|
refsymrel2 |
|- ( ( RefRel R /\ SymRel R ) <-> ( ( ( _I |` dom R ) C_ R /\ `' R C_ R ) /\ Rel R ) ) |
10 |
|
dfsymrel2 |
|- ( SymRel R <-> ( `' R C_ R /\ Rel R ) ) |
11 |
10
|
anbi2i |
|- ( ( ( ( _I |` dom R ) C_ R /\ Rel R ) /\ SymRel R ) <-> ( ( ( _I |` dom R ) C_ R /\ Rel R ) /\ ( `' R C_ R /\ Rel R ) ) ) |
12 |
8 9 11
|
3bitr4i |
|- ( ( RefRel R /\ SymRel R ) <-> ( ( ( _I |` dom R ) C_ R /\ Rel R ) /\ SymRel R ) ) |
13 |
12
|
anbi2i |
|- ( ( RefRel R /\ ( RefRel R /\ SymRel R ) ) <-> ( RefRel R /\ ( ( ( _I |` dom R ) C_ R /\ Rel R ) /\ SymRel R ) ) ) |
14 |
7 13
|
bitr4i |
|- ( ( ( ( _I |` dom R ) C_ R /\ Rel R ) /\ ( RefRel R /\ SymRel R ) ) <-> ( RefRel R /\ ( RefRel R /\ SymRel R ) ) ) |
15 |
|
df-redundp |
|- ( redund ( ( ( _I |` dom R ) C_ R /\ Rel R ) , RefRel R , ( RefRel R /\ SymRel R ) ) <-> ( ( ( ( _I |` dom R ) C_ R /\ Rel R ) -> RefRel R ) /\ ( ( ( ( _I |` dom R ) C_ R /\ Rel R ) /\ ( RefRel R /\ SymRel R ) ) <-> ( RefRel R /\ ( RefRel R /\ SymRel R ) ) ) ) ) |
16 |
6 14 15
|
mpbir2an |
|- redund ( ( ( _I |` dom R ) C_ R /\ Rel R ) , RefRel R , ( RefRel R /\ SymRel R ) ) |