Metamath Proof Explorer


Theorem refrelredund4

Description: The naive version of the definition of reflexive relation is redundant with respect to reflexive relation (see dfrefrel2 ) if the relation is symmetric as well. (Contributed by Peter Mazsa, 26-Oct-2022)

Ref Expression
Assertion refrelredund4
|- redund ( ( ( _I |` dom R ) C_ R /\ Rel R ) , RefRel R , ( RefRel R /\ SymRel R ) )

Proof

Step Hyp Ref Expression
1 inxpssres
 |-  ( _I i^i ( dom R X. ran R ) ) C_ ( _I |` dom R )
2 sstr2
 |-  ( ( _I i^i ( dom R X. ran R ) ) C_ ( _I |` dom R ) -> ( ( _I |` dom R ) C_ R -> ( _I i^i ( dom R X. ran R ) ) C_ R ) )
3 1 2 ax-mp
 |-  ( ( _I |` dom R ) C_ R -> ( _I i^i ( dom R X. ran R ) ) C_ R )
4 3 anim1i
 |-  ( ( ( _I |` dom R ) C_ R /\ Rel R ) -> ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ Rel R ) )
5 dfrefrel2
 |-  ( RefRel R <-> ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ Rel R ) )
6 4 5 sylibr
 |-  ( ( ( _I |` dom R ) C_ R /\ Rel R ) -> RefRel R )
7 an12
 |-  ( ( ( ( _I |` dom R ) C_ R /\ Rel R ) /\ ( RefRel R /\ SymRel R ) ) <-> ( RefRel R /\ ( ( ( _I |` dom R ) C_ R /\ Rel R ) /\ SymRel R ) ) )
8 anandir
 |-  ( ( ( ( _I |` dom R ) C_ R /\ `' R C_ R ) /\ Rel R ) <-> ( ( ( _I |` dom R ) C_ R /\ Rel R ) /\ ( `' R C_ R /\ Rel R ) ) )
9 refsymrel2
 |-  ( ( RefRel R /\ SymRel R ) <-> ( ( ( _I |` dom R ) C_ R /\ `' R C_ R ) /\ Rel R ) )
10 dfsymrel2
 |-  ( SymRel R <-> ( `' R C_ R /\ Rel R ) )
11 10 anbi2i
 |-  ( ( ( ( _I |` dom R ) C_ R /\ Rel R ) /\ SymRel R ) <-> ( ( ( _I |` dom R ) C_ R /\ Rel R ) /\ ( `' R C_ R /\ Rel R ) ) )
12 8 9 11 3bitr4i
 |-  ( ( RefRel R /\ SymRel R ) <-> ( ( ( _I |` dom R ) C_ R /\ Rel R ) /\ SymRel R ) )
13 12 anbi2i
 |-  ( ( RefRel R /\ ( RefRel R /\ SymRel R ) ) <-> ( RefRel R /\ ( ( ( _I |` dom R ) C_ R /\ Rel R ) /\ SymRel R ) ) )
14 7 13 bitr4i
 |-  ( ( ( ( _I |` dom R ) C_ R /\ Rel R ) /\ ( RefRel R /\ SymRel R ) ) <-> ( RefRel R /\ ( RefRel R /\ SymRel R ) ) )
15 df-redundp
 |-  ( redund ( ( ( _I |` dom R ) C_ R /\ Rel R ) , RefRel R , ( RefRel R /\ SymRel R ) ) <-> ( ( ( ( _I |` dom R ) C_ R /\ Rel R ) -> RefRel R ) /\ ( ( ( ( _I |` dom R ) C_ R /\ Rel R ) /\ ( RefRel R /\ SymRel R ) ) <-> ( RefRel R /\ ( RefRel R /\ SymRel R ) ) ) ) )
16 6 14 15 mpbir2an
 |-  redund ( ( ( _I |` dom R ) C_ R /\ Rel R ) , RefRel R , ( RefRel R /\ SymRel R ) )