Metamath Proof Explorer


Theorem reglogbas

Description: General log of the base is 1. (Contributed by Stefan O'Rear, 19-Sep-2014) (New usage is discouraged.) Use logbid1 instead.

Ref Expression
Assertion reglogbas C+C1logClogC=1

Proof

Step Hyp Ref Expression
1 relogcl C+logC
2 1 recnd C+logC
3 2 adantr C+C1logC
4 logne0 C+C1logC0
5 3 4 dividd C+C1logClogC=1