Metamath Proof Explorer


Theorem relelec

Description: Membership in an equivalence class when R is a relation. (Contributed by Mario Carneiro, 11-Sep-2015)

Ref Expression
Assertion relelec RelRABRBRA

Proof

Step Hyp Ref Expression
1 elex ABRAV
2 ecexr ABRBV
3 1 2 jca ABRAVBV
4 3 adantl RelRABRAVBV
5 brrelex12 RelRBRABVAV
6 5 ancomd RelRBRAAVBV
7 elecg AVBVABRBRA
8 4 6 7 pm5.21nd RelRABRBRA