Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for metakunt General helpful statements relogbexpd  
				
		 
		
			
		 
		Description:   Identity law for general logarithm: the logarithm of a power to the base
       is the exponent, a deduction version.  (Contributed by metakunt , 22-May-2024) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						relogbexpd.1    ⊢   φ   →   B  ∈    ℝ   +           
					 
					
						relogbexpd.2    ⊢   φ   →   B  ≠   1          
					 
					
						relogbexpd.3    ⊢   φ   →   M  ∈   ℤ          
					 
				
					Assertion 
					relogbexpd    ⊢   φ   →   log  B  B  M   =  M         
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							relogbexpd.1   ⊢   φ   →   B  ∈    ℝ   +           
						
							2 
								
							 
							relogbexpd.2   ⊢   φ   →   B  ≠   1          
						
							3 
								
							 
							relogbexpd.3   ⊢   φ   →   M  ∈   ℤ          
						
							4 
								1  2  3 
							 
							3jca   ⊢   φ   →    B  ∈    ℝ   +      ∧   B  ≠   1     ∧   M  ∈   ℤ           
						
							5 
								
							 
							relogbexp   ⊢    B  ∈    ℝ   +      ∧   B  ≠   1     ∧   M  ∈   ℤ      →   log  B  B  M   =  M         
						
							6 
								4  5 
							 
							syl   ⊢   φ   →   log  B  B  M   =  M