Metamath Proof Explorer


Theorem relogbexpd

Description: Identity law for general logarithm: the logarithm of a power to the base is the exponent, a deduction version. (Contributed by metakunt, 22-May-2024)

Ref Expression
Hypotheses relogbexpd.1 φB+
relogbexpd.2 φB1
relogbexpd.3 φM
Assertion relogbexpd φlogBBM=M

Proof

Step Hyp Ref Expression
1 relogbexpd.1 φB+
2 relogbexpd.2 φB1
3 relogbexpd.3 φM
4 1 2 3 3jca φB+B1M
5 relogbexp B+B1MlogBBM=M
6 4 5 syl φlogBBM=M