Metamath Proof Explorer


Theorem relogmul

Description: The natural logarithm of the product of two positive real numbers is the sum of natural logarithms. Property 2 of Cohen p. 301, restricted to natural logarithms. (Contributed by Steve Rodriguez, 25-Nov-2007)

Ref Expression
Assertion relogmul A+B+logAB=logA+logB

Proof

Step Hyp Ref Expression
1 efadd logAlogBelogA+logB=elogAelogB
2 readdcl logAlogBlogA+logB
3 1 2 relogoprlem A+B+logAB=logA+logB