Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - add the Axiom of Power Sets Relations relopabiv  
				
		 
		
			
		 
		Description:   A class of ordered pairs is a relation.  For a version without a
       disjoint variable condition, but a longer proof using ax-11  and
       ax-12  , see relopabi  .  (Contributed by BJ , 22-Jul-2023) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypothesis 
						relopabiv.1   ⊢   A  =   x  y |   φ          
					 
				
					Assertion 
					relopabiv   ⊢   Rel  ⁡  A       
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							relopabiv.1  ⊢   A  =   x  y |   φ          
						
							2 
								
							 
							vex  ⊢   x  ∈  V       
						
							3 
								
							 
							vex  ⊢   y  ∈  V       
						
							4 
								2  3 
							 
							pm3.2i  ⊢    x  ∈  V    ∧   y  ∈  V        
						
							5 
								4 
							 
							a1i   ⊢   φ   →    x  ∈  V    ∧   y  ∈  V          
						
							6 
								5 
							 
							ssopab2i  ⊢    x  y |   φ     ⊆   x  y |    x  ∈  V    ∧   y  ∈  V            
						
							7 
								
							 
							df-xp  ⊢    V  ×  V    =   x  y |    x  ∈  V    ∧   y  ∈  V            
						
							8 
								6  1  7 
							 
							3sstr4i  ⊢   A  ⊆   V  ×  V         
						
							9 
								
							 
							df-rel   ⊢   Rel  ⁡  A    ↔   A  ⊆   V  ×  V           
						
							10 
								8  9 
							 
							mpbir  ⊢   Rel  ⁡  A