Metamath Proof Explorer


Theorem relopabiv

Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, but a longer proof using ax-11 and ax-12 , see relopabi . (Contributed by BJ, 22-Jul-2023)

Ref Expression
Hypothesis relopabiv.1 A=xy|φ
Assertion relopabiv RelA

Proof

Step Hyp Ref Expression
1 relopabiv.1 A=xy|φ
2 vex xV
3 vex yV
4 2 3 pm3.2i xVyV
5 4 a1i φxVyV
6 5 ssopab2i xy|φxy|xVyV
7 df-xp V×V=xy|xVyV
8 6 1 7 3sstr4i AV×V
9 df-rel RelAAV×V
10 8 9 mpbir RelA