Metamath Proof Explorer


Theorem relopabi

Description: A class of ordered pairs is a relation. (Contributed by Mario Carneiro, 21-Dec-2013) Remove dependency on ax-sep , ax-nul , ax-pr . (Revised by KP, 25-Oct-2021)

Ref Expression
Hypothesis relopabi.1 A = x y | φ
Assertion relopabi Rel A

Proof

Step Hyp Ref Expression
1 relopabi.1 A = x y | φ
2 df-opab x y | φ = z | x y z = x y φ
3 1 2 eqtri A = z | x y z = x y φ
4 3 abeq2i z A x y z = x y φ
5 simpl z = x y φ z = x y
6 5 2eximi x y z = x y φ x y z = x y
7 4 6 sylbi z A x y z = x y
8 ax6evr u y = u
9 pm3.21 x y = z y = u y = u x y = z
10 9 eximdv x y = z u y = u u y = u x y = z
11 8 10 mpi x y = z u y = u x y = z
12 opeq2 y = u x y = x u
13 eqtr2 x y = x u x y = z x u = z
14 13 eqcomd x y = x u x y = z z = x u
15 12 14 sylan y = u x y = z z = x u
16 15 eximi u y = u x y = z u z = x u
17 11 16 syl x y = z u z = x u
18 17 eqcoms z = x y u z = x u
19 18 2eximi x y z = x y x y u z = x u
20 excomim x y u z = x u y x u z = x u
21 19 20 syl x y z = x y y x u z = x u
22 vex x V
23 vex u V
24 22 23 pm3.2i x V u V
25 24 jctr z = x u z = x u x V u V
26 25 2eximi x u z = x u x u z = x u x V u V
27 df-xp V × V = x u | x V u V
28 df-opab x u | x V u V = z | x u z = x u x V u V
29 27 28 eqtri V × V = z | x u z = x u x V u V
30 29 abeq2i z V × V x u z = x u x V u V
31 26 30 sylibr x u z = x u z V × V
32 31 eximi y x u z = x u y z V × V
33 7 21 32 3syl z A y z V × V
34 ax5e y z V × V z V × V
35 33 34 syl z A z V × V
36 35 ssriv A V × V
37 df-rel Rel A A V × V
38 36 37 mpbir Rel A