Metamath Proof Explorer
		
		
		
		Description:  A singleton of an ordered pair is a relation.  (Contributed by NM, 17-May-1998)  (Revised by Mario Carneiro, 26-Apr-2015)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | relsn.1 |  | 
					
						|  |  | relsnop.2 |  | 
				
					|  | Assertion | relsnop |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relsn.1 |  | 
						
							| 2 |  | relsnop.2 |  | 
						
							| 3 |  | relsnopg |  | 
						
							| 4 | 1 2 3 | mp2an |  |