Metamath Proof Explorer


Theorem relssi

Description: Inference from subclass principle for relations. (Contributed by NM, 31-Mar-1998)

Ref Expression
Hypotheses relssi.1 RelA
relssi.2 xyAxyB
Assertion relssi AB

Proof

Step Hyp Ref Expression
1 relssi.1 RelA
2 relssi.2 xyAxyB
3 ssrel RelAABxyxyAxyB
4 1 3 ax-mp ABxyxyAxyB
5 2 ax-gen yxyAxyB
6 4 5 mpgbir AB