Metamath Proof Explorer


Theorem relwlk

Description: The set ( WalksG ) of all walks on G is a set of pairs by our definition of a walk, and so is a relation. (Contributed by Alexander van der Vekens, 30-Jun-2018) (Revised by AV, 19-Feb-2021)

Ref Expression
Assertion relwlk RelWalksG

Proof

Step Hyp Ref Expression
1 df-wlks Walks=gVfp|fWorddomiEdggp:0fVtxgk0..^fif-pk=pk+1iEdggfk=pkpkpk+1iEdggfk
2 1 relmptopab RelWalksG