Metamath Proof Explorer


Theorem renegd

Description: Real part of negative. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis recld.1 φA
Assertion renegd φA=A

Proof

Step Hyp Ref Expression
1 recld.1 φA
2 reneg AA=A
3 1 2 syl φA=A